Selective exposure in action: Do visitors of product evaluation portals select reviews in a biased manner?

Abstract

Most people in industrialized countries regularly purchase products online. Consumers often rely on previous customers’ reviews to make purchasing decisions. The current research investigates whether potential online customers select these reviews in a biased way and whether typical interface properties of product evaluation portals foster biased selection. Based on selective exposure research, potential online customers should have a bias towards selecting positive reviews when they have an initial preference for a product. We tested this prediction across five studies (total N = 1376) while manipulating several typical properties of the review selection interface that should – according to earlier findings – facilitate biased selection. Across all studies, we found some evidence for a bias in favor of selecting positive reviews, but the aggregated effect was non-significant in an internal meta-analysis. Contrary to our hypothesis and not replicating previous research, none of the interface properties that were assumed to increase biased selection led to the predicted effects. Overall, the current research suggests that biased information selection, which has regularly been found in many other contexts, only plays a minor role in online review selection. Thus, there is no need to fear that product evaluation portals elicit biased impressions about products among consumers due to selective exposure.

Bibliographic citation

Winter, K., Zapf, B., Hütter, M., Tichy, N., & Sassenberg, K. (2021). Selective exposure in action: Do visitors of product evaluation portals select reviews in a biased manner?. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 15(1), Article 4. doi:https://doi.org/10.5817/CP2021-1-4

Keywords

Product evaluation portals; customer reviews; information selection; selective exposure

Full Text:

HTML

References

Show references Hide references

Abelson, R. P. (1988). Conviction. American Psychologist, 43(4), 267–275. https://doi.org/10.1037/0003-066X.43.4.267

Becker, D., Grapendorf, J., Greving, H., & Sassenberg, K. (2018). Perceived threat and internet use predict intentions to get bowel cancer screening (colonoscopy): Longitudinal questionnaire study. Journal of Medical Internet Research, 20(2), Article e46. https://doi.org/10.2196/jmir.9144

Buder, J., & Schwind, C. (2012). Learning with personalized recommender systems: A psychological view. Computers in Human Behavior, 28(1), 207–216. https://doi.org/10.1016/j.chb.2011.09.002

Chaiken, S., Liberman, A., & Eagly, A. H. (1989). Heuristic and systematic processing within and beyond the persuasion context. In J. S. Uleman & J. A. Bargh (Eds.), Unintended thought (pp. 212–252). The Guilford Press.

Chen, Y.-F. (2008). Herd behavior in purchasing books online. Computers in Human Behavior, 24(5), 1977–1992. https://doi.org/10.1016/j.chb.2007.08.004

Clement, J. (2019). Worldwide e-commerce share of retail sales 2015-2023. Statista – The Statistics Portal. https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/

Ditrich, L., Lüders, A., Jonas, E., & Sassenberg, K. (2019). Leader’s group-norm violations elicit intentions to leave the group—if the group-norm is not affirmed. Journal of Experimental Social Psychology, 84, 103798. http://dx.doi.org/10.1016/j.jesp.2019.03.009

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146

Fischer, P., & Greitemeyer, T. (2010). A new look at selective-exposure effects: An integrative model. Current Directions in Psychological Science, 19(6), 384–389. https://doi.org/10.1177/0963721410391246

Fretwell, L., Stine, J., Sethi, H., & Noronha, A. (2013). ‘Catch and keep’ digital shoppers: How to deliver retail their way. Cisco IBSG. http://www.cisco.com/web/about/ac79/docs/retail/Catch-and-Keep-the-Digital-Shopper_PoV.pdf

Greitemeyer, T., & Schulz-Hardt, S. (2003). Preference-consistent evaluation of information in the hidden profile paradigm: Beyond group-level explanations for the dominance of shared information in group decisions. Journal of Personality and Social Psychology, 84(2), 322–339. https://doi.org/10.1037/0022-3514.84.2.322

Greving, H., & Sassenberg, K. (2015). Counter-regulation online: Threat biases retrieval of information during Internet search. Computers in Human Behavior, 50, 291–298. https://doi.org/10.1016/j.chb.2015.03.077

Greving, H., & Sassenberg, K. (2018). Threatened individuals prefer positive information during Internet search: An experimental laboratory study. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 12(1), Article 6. https://doi.org/10.5817/CP2018-1-6

Hart, W., Albarracín, D., Eagly, A. H., Brechan, I., Lindberg, M. J., & Merrill, L. (2009). Feeling validated versus being correct: A meta-analysis of selective exposure to information. Psychological Bulletin, 135(4), 555–588. https://doi.org/10.1037/a0015701

Harvey, N., & Fischer, I. (1997). Taking advice: Accepting help, improving judgment, and sharing responsibility. Organizational Behavior and Human Decision Processes, 70(2), 117–133. https://doi.org/10.1006/obhd.1997.2697

Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings lead you to the product, reviews help you clinch it? the mediating role of online review sentiments on product sales. Decision Support Systems, 57, 42–53. https://doi.org/10.1016/j.dss.2013.07.009

Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201–214. https://doi.org/10.1007/s10799-008-0041-2

Hütter, M., & Ache, F. (2016). Seeking advice: A sampling approach to advice taking. Judgment and Decision Making, 11(4), 401–415. http://journal.sjdm.org/15/151110a/jdm151110a.html

Jacoby, J., Olson, J. C., & Haddock, R. A. (1971). Price, brand name, and product composition characteristics as determinants of perceived quality. Journal of Applied Psychology, 55(6), 570–579. https://doi.org/10.1037/h0032045

Jonas, E., & Frey, D. (2003). Information search and presentation in advisor-client interactions. Organizational Behavior and Human Decision Processes, 91(2), 154–168. https://doi.org/10.1016/S0749-5978(03)00059-1

Jonas, E., Schulz-Hardt, S., & Frey, D. (2005). Giving advice or making decisions in someone else’s place: The influence of impression, defense, and accuracy motivation on the search for new information. Personality and Social Psychology Bulletin, 31(7), 977–990. https://doi.org/10.1177/0146167204274095

Jonas, E., Schulz-Hardt, S., Frey, D., & Thelen, N. (2001). Confirmation bias in sequential information search after preliminary decisions: An expansion of dissonance theoretical research on selective exposure to information. Journal of Personality and Social Psychology, 80(4), 557–571. https://doi.org/10.1037/0022-3514.80.4.557

Jonas, E., Traut-Mattausch, E., Frey, D., & Greenberg, J. (2008). The path or the goal? Decision vs. information focus in biased information seeking after preliminary decisions. Journal of Experimental Social Psychology, 44(4), 1180–1186. https://doi.org/10.1016/j.jesp.2008.02.009

Knobloch-Westerwick, S., & Kleinman, S. B. (2012). Preelection selective exposure: Confirmation bias versus informational utility. Communication Research, 39(2), 170–193. https://doi.org/10.1177/0093650211400597

Kray, L. J., & Galinsky, A. D. (2003). The debiasing effect of counterfactual mind-sets: Increasing the search for disconfirmatory information in group decisions. Organizational Behavior and Human Decision Processes, 91(1), 69–81. https://doi.org/10.1016/S0749-5978(02)00534-4

Lakens, D. (2014, June 7). Calculating confidence intervals for Cohen’s d and eta-squared using SPSS, R, and Stata. The 20% Statistician. http://daniellakens.blogspot.de/2014/06/calculating-confidence-intervals-for.html

Leiner, D. J. (2016). Our research’s breadth lives on convenience samples: A case study of the online respondent pool “SoSci Panel”. SCM Studies in Communication and Media, 5(4), 367–396. https://doi.org/10.5771/2192-4007-2016-4-367

Lueders, A., Prentice, M., & Jonas, E. (2019). Refugees in the media: Exploring a vicious cycle of frustrated psychological needs, selective exposure, and hostile intergroup attitudes. European Journal of Social Psychology, 49(7), 1471–1479. https://doi.org/10.1002/ejsp.2580

Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (5th ed.). Irwin.

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175–220. https://doi.org/10.1037/1089-2680.2.2.175

Russo, J. E., Medvec, V. H., & Meloy, M. G. (1996). The distortion of information during decisions. Organizational Behavior and Human Decision Processes, 66(1), 102–110. https://doi.org/10.1006/obhd.1996.0041

Scholl, A., & Sassenberg, K. (2014). Where could we stand if I had . . .? How social power impacts counterfactual thinking after failure. Journal of Experimental Social Psychology, 53, 51–61. http://dx.doi.org/10.1016/j.jesp.2014.02.005

Schulz-Hardt, S., Frey, D., Lüthgens, C., & Moscovici, S. (2000). Biased information search in group decision making. Journal of Personality and Social Psychology, 78(4), 655–669. https://doi.org/10.1037/0022-3514.78.4.655

Schwind, C., & Buder, J. (2012). Reducing confirmation bias and evaluation bias: When are preference-inconsistent recommendations effective – and when not? Computers in Human Behavior, 28(6), 2280–2290. https://doi.org/10.1016/j.chb.2012.06.035

Schwind, C., Buder, J., Cress, U., & Hesse, F. W. (2012). Preference-inconsistent recommendations: An effective approach for reducing confirmation bias and stimulating divergent thinking? Computers & Education, 58(2), 787–796. https://doi.org/10.1016/j.compedu.2011.10.003

Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159–169. https://doi.org/10.1016/j.jretai.2004.04.001

Sniezek, J. A., & Buckley, T. (1995). Cueing and cognitive conflict in judge-advisor decision making. Organizational Behavior and Human Decision Processes, 62(2), 159–174. https://doi.org/10.1006/obhd.1995.1040

Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9(2), 164–182. https://doi.org/10.1037/1082-989X.9.2.164

Svenson, O. (1992). Differentiation and consolidation theory of human decision making: A frame of reference for the study of pre- and post-decision processes. Acta Psychologica, 80(1–3), 143–168. https://doi.org/10.1016/0001-6918(92)90044-E

Szybillo, G. J., & Jacoby, J. (1974). Intrinsic versus extrinsic cues as determinants of perceived product quality. Journal of Applied Psychology, 59(1), 74–78. https://doi.org/10.1037/h0035796

van Ooijen, I., Fransen, M. L., Verlegh, P. W. J., & Smit, E. G. (2017). Packaging design as an implicit communicator: Effects on product quality inferences in the presence of explicit quality cues. Food Quality and Preference, 62, 71–79. https://doi.org/10.1016/j.foodqual.2017.06.007

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3). https://doi.org/10.18637/jss.v036.i03

Zhang, Y., Sun, Y., & Kim, Y. (2017). The influence of individual differences on consumer’s selection of online sources for health information. Computers in Human Behavior, 67, 303–312. https://doi.org/10.1016/j.chb.2016.11.008

https://doi.org/10.5817/CP2021-1-4