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Abstract  

We explored problematic smartphone use (PSU) using latent profile analysis (LPA) and 
relationships with anxiety variables, including severity of generalized anxiety disorder 
(GAD), social anxiety disorder (SAD), and Fear of Missing Out (FoMO) in a non-clinical 
sample. We conducted a web-based survey (during the COVID-19 pandemic from 
February to March 2020) with high school students (N = 1,797; 1,164 female; 
ages 13–19 years) in Tianjin, China, administering the Smartphone Addiction 
Scale-Short Version (SAS-SV) to assess PSU, Generalized Anxiety Disorder (GAD-7) Scale, 
Social Interaction Anxiety Scale (SIAS), and Fear of Missing Out (FoMO) Scale. Using 
Mplus 8.7, we conducted LPA on SAS-SV item responses to uncover latent profiles and 
relations with anxiety and fear measures. A three-profile PSU model fit the data 
according to fit indices and likelihood ratio tests. SAS-SV item responses were lowest in 
profile 1, moderate in profile 2, and most severe in profile 3. Individual PSU profiles 
modeled by LPA demonstrated significant differences in social and generalized anxiety 
severity and FoMO. Controlling for age and sex, adolescents with higher levels of anxiety 
were more likely to be classified as profiles 2 and 3 rather than profile 1. These findings 
will hopefully inspire future studies and treatments concerning the severity of PSU as it 
relates to various psychopathology constructs.  
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Introduction  

Smartphones offer many advantages to users including possibilities for efficient information acquisition, improved 
communication and socialization, enhancing collaboration in work and school settings (Jung, 2014), and facilitating 
healthcare delivery (M. Lee et al., 2018; Zhao et al., 2016). Nevertheless, individuals can engage in excessive 
smartphone use that has adverse functional consequences, like poor academic (Sapci et al., 2021) and professional 



performance (Duke & Montag, 2017; see also recent association between higher objective smartphone use and 
lower student performance in the study by Elhai, Sapci et al., 2021; Sunday et al., 2021), as well as relations with 
impaired and unsafe driving (Kaviani et al., 2020), and phubbing (Xie et al., 2019). Moreover, a vast literature has 
found several mental health problems correlated with excessive smartphone use (Busch & McCarthy, 2021; Coyne 
et al., 2019; Elhai, Levine, & Hall, 2019).  

In the present paper, rather than focusing on a variable-centered approach (where we analyze sample mean/sum 
scores across items) to examine constructs correlated with excessive smartphone use, we used a person-centered 
approach to uncover underlying heterogeneity in excessive smartphone use. In the methods literature, 
correlational studies using a single sample are referred to as variable-centered studies. Whereas studies using 
mixture modeling (e.g., cluster analysis, latent profile analysis) to explore underlying subgroups of participants are 
referred to as person-centered studies (Ferguson et al., 2020). One of the advantages of a person-centered 
approach is that it overcomes the somewhat imprecise measurement of an entire sample using only mean scores. 
It is challenging to gain a comprehensive understanding of psychological phenomena by treating a sample as a 
single set of participants who are all equivalent. Instead, this method allows for within-subjects heterogeneity 
(McCutcheon, 2002; Weller et al., 2020). As such, while in a variable-centered approach, individuals with the same 
mean/sum score are treated the same despite potentially showing different scores on item-level, in the person-
centered approach, such heterogeneity is specifically investigated. We used latent profile analysis (LPA) to explore 
underlying subgroups of excessive smartphone use symptom presentations and subsequently examined mental 
health variables related to the latent profiles. Heretofore, little examination has been conducted that explores the 
heterogeneity of clinical symptom presentations of excessive smartphone use and anxiety-related correlates of 
those heterogeneous presentations. 

Problematic Smartphone Use 

Excessive smartphone use (Claesdotter-Knutsson et al., 2021; Wacks & Weinstein, 2021), smartphone use disorder 
(Montag & Becker, 2020; Montag et al., 2021), and smartphone/cell-phone addiction (De-Sola Gutiérrez et al., 2016; 
Rozgonjuk et al., 2022) are frequently referred to as “problematic smartphone use” (PSU) in the literature and will 
be referred to as PSU in the present article. A common, concise definition is “compulsive use that leads to impaired 
daily functioning in terms of productivity, social relationships, physical health, or emotional well-being” 
(Horwood & Anglim, 2018, p. 349). PSU can be conceptualized using an internet use disorders framework, 
specifically mobile internet use disorders (Montag et al., 2021), which differentiates PSU from non-mobile 
problematic internet use (PIU) on a stationary computer (perhaps in particular due to constant availability of online 
content in the case of smartphones). Though activating different brain areas (Horvath et al., 2020; Pyeon et al., 
2021; Zheng et al., 2022), PSU is a concept that shares similarities to the maladaptive behavioral aspects of 
substance use disorders (Billieux et al., 2015; Brand et al., 2019). Numerous studies have shown that PSU severity 
positively correlates mildly to moderately with many mental disorder symptoms in adults, such as anxiety (Elhai, 
Levine, & Hall, 2019), depression (Elhai, Gallinari et al., 2020), and stress severity (Long et al., 2016), with similar 
findings in adolescent samples (Erdem & Sezer Efe, 2022; Extremera et al., 2019; Pereira et al., 2020; Wang & Lei, 
2021; Wang et al., 2019; Watson et al., 2021). Hence, although PSU is not a diagnosis in the DSM-5 or ICD-11 
manuals, PSU remains a serious problem that is related to adverse functional consequences on affected 
individuals’ lives (Busch & McCarthy, 2021) and thus is worth exploring. 

The prevalence estimates of PSU in varying samples of adolescents ranges from as low as 10% (Lopez-Fernandez 
et al., 2014), 20%–31% (Long et al., 2016; Sohn et al., 2019), and much higher, nearing 50% (van Velthoven et al., 
2018; Yen et al., 2009). In one Swiss study, self-reported PSU was more prevalent in adolescents (15–16 years old) 
than in young adults 19 years and older (Haug et al., 2015). One recent meta-analysis demonstrates prevalence 
increases over time in dozens of additional international samples (Olson et al., 2022). For the subjects of the 
present study, Chinese adolescents, the prevalence of PSU is estimated at 26.2% (Tao et al., 2015). Understanding 
smartphone technology’s potential effect on adolescents is paramount in raising the next generation of well-
rounded young adults.  

Many previous studies have examined variable-centered associations between PSU severity and psychological 
constructs (Busch & McCarthy, 2021; Elhai, Rozgonjuk et al., 2019). PSU severity is particularly associated with 
higher depression and anxiety severity (Elhai, Levine, & Hall, 2019; Elhai et al., 2017). More recent support has 
been found for such variables as worry (Elhai, Rozgonjuk et al., 2019), rumination (Elhai, Yang, Dempsey, & Montag, 
2020), social anxiety (Peterka-Bonetta et al., 2019), negative primary emotional systems (Rozgonjuk, Davis, & 



Montag, 2021), individual differences in emotional (dys)regulation (Grommisch et al., 2020), emotional distress 
factors, and mechanisms of self-constraint (Oh et al., 2021; H. Yang et al., 2022). 

However, only a handful of studies have explored underlying subgroups of PSU or problematic internet use 
symptom presentations using latent class analysis or LPA. To begin with, Kim et al. (2016) and Mok et al., (2014) 
examined latent profiles of Korean participants, and J. Chen et al. (2021) examined latent profiles of Chinese 
college students regarding tendencies of problematic personal computer, smartphone, and internet use severity 
in relation to psychopathology such as anxiety symptoms. And, in American samples, Elhai, Yang, Dempsey, and 
Montag (2020) examined latent profiles of undergraduate students regarding PSU symptom presentations. 
Addressing the constructs in the present study, LPA has been employed to explore the Fear of Missing Out (FoMO) 
as it relates to anxiety (Elhai et al., 2021a) and anxiety-related personality traits (neuroticism; Rozgonjuk, 
Sindermann et al., 2021), PSU (Fuster et al., 2017; H. Yang et al., 2022), and social anxiety (Yue et al., 2021). These 
studies assessing similar covariates to the present work found between two and six latent profiles based on 
problematic internet or smartphone use, but most commonly found between three and four profiles.. There is, 
however, a notable lack of literature addressing PSU and generalized anxiety using LPA, and the present study is 
one of the first studies of which the authors are aware analyzing this question. Latent profiles, as mentioned 
previously, allow us to identify to what extent these constructs are related to the heterogeneity of PSU. While 
homogenized variable data is useful, LPA studies to date have shown that not all participants are alike and 
therefore it begs the question, how are they different? By using LPA, we can begin to answer this question with 
regard to generalized and social anxiety and to bolster the FoMO literature on a new sample. 

Given that anxiety is a well-known correlate of PSU severity (Busch & McCarthy, 2021; Elhai, Levine, & Hall, 2019), 
anxiety is the focus of the present study. Of note, we were not interested in anxiety as a single construct as 
investigated previously in relation to PSU severity (Elhai, Yang, Dempsey, & Montag, 2020; S.-Y. Lee et al., 2018; 
Mok et al., 2014). Instead, we were interested in examining specific types of anxiety for differential relations with 
latent PSU profiles. Next, we will discuss the different types of anxiety analyzed in the present study. 

Generalized Anxiety Disorder 

Generalized anxiety disorder (GAD) is primarily characterized by longstanding, excessive anxiety and worry 
(apprehensive expectation), difficulty controlling worry, and physiological consequences from such anxiety (e.g., 
fatigue, irritability, muscle tension; APA, 2013). Recent work has begun to demonstrate associations between PSU 
severity and primary symptoms of GAD, such as worry (De-Sola Gutierrez et al., 2016; Elhai et al., 2016; Guo et al., 
2020; Rho et al., 2019). While a vast portion of psychological literature is based on samples of Western, Educated, 
Industrialized, Rich, and Democratic (WEIRD) populations, as discussed by Henrich et al. (2010), PSU is related to 
GAD severity, also in non-WEIRD samples (Elhai, Yang, McKay, & Asmundson, 2020; Guo et al., 2020; Islam et al., 
2021). Thus, GAD may be of relevance for investigations in relation to PSU severity in non-WEIRD samples. 

Social Anxiety Disorder 

Social anxiety disorder (SAD) is evidenced by marked fear or anxiety about social situations for fear of negative 
evaluation (APA, 2013). SAD and PSU severity have been significantly positively associated (Elhai, Levine & Hall, 
2019; W. Hong et al., 2019), especially with smartphone users on social media (Enez Darcin et al., 2016). Social 
anxiety is thought to cause avoidance of in-person social settings, replacing in-person socialization with online 
social engagement, or using the smartphone for non-social activity (Elhai, Levine, & Hall, 2019). Thus, we included 
SAD severity in the examination of PSU latent profiles. 

Fear of Missing Out (FoMO) 

FoMO is a form of cognitive-related anxiety in which one believes that others have rewarding experiences from 
which the individual is absent and thus involves a persistent desire to stay connected with people in one‘s social 
network (Elhai et al., 2021b; Przybylski et al., 2013). Additionally, FoMO can involve a behavioral strategy that seeks 
to relieve tension and anxiety through compulsive checking of information streams (such as on a smartphone) to 
maintain social connection (Elhai et al., 2021b; Przybylski et al., 2013). As such, it is important to note that FoMO 
herein is conceptualized as an internet-related type of cognitive anxiety from a physiological standpoint within the 
context of the I-PACE Model discussed below (Elhai, Yang, & Montag, 2019; Wegmann et al., 2017) rather than a 



fear state. Furthermore, FoMO is consistently positively related to PSU severity (Elhai et al., 2021b) and thus is an 
important construct due to its likely detrimental impact on productivity (Rozgonjuk et al., 2020). Thus we included 
FoMO as a covariate of PSU. 

Interaction of Person-Affect-Cognition-Execution (I-PACE) Model 

The I-PACE theoretical model (Brand et al., 2016, 2019) suggests that complex moderation and mediation effects 
of four broad main components influence PIU and related behaviors such as PSU. Firstly, predisposing variables 
involve the model‘s P-component, the person‘s core characteristics, including personality/temperament, coping 
style, childhood experiences, genetics, needs/motives/values, and psychopathology. Secondly, the A-component 
(affect) addresses expectancies, mood, and cognitive biases that inform how one copes and compensates with 
stress-inducing and/or anxiety-provoking stimuli. Third, the C-component, overlapping somewhat with the A-
component, handles cognitive processes and biases that accompany reactions to moods and stressors and 
reinforces those maladaptive behaviors meant to alleviate worry, stress, and anxiety. We begin to fill a gap in the 
literature by investigating specific types of anxiety, including GAD and SAD severity (P-component), and FoMO 
severity (A/C-component) in relation to PSU severity. Much of the existing literature deals with generic anxiety 
rather than multiple specific types simultaneously (Elhai, Levine, & Hall, 2019; Elhai et al., 2017). Fourth, the E-
component of the model deals with reduced executive function, namely, decision-making and the reduction of 
inhibitory control in which the individual experiences difficulty discontinuing maladaptive behavior. 

Aims, Research Model, and Hypotheses 

Aims 

Much research has examined psychopathology in relation to PSU (Busch & McCarthy, 2021; Coyne et al., 2019), 
but less is known about specific types of anxiety and their differential relations with PSU severity. Further 
unexplored is within-group heterogeneity (i.e., latent profiles) of PSU and its relations with different types of 
anxiety. This study examines the nature of self-reported PSU at the individual level. Using LPA, we take a deeper 
look into associations of anxiety and FoMO with PSU by examining within-group heterogeneity of PSU symptom 
severity in the total sample.  

As Montag and Becker (2020) note, Asia constitutes more than half of the world‘s population and billions of 
internet and smartphone users. Focusing on non-WEIRD populations in the observation of psychological 
phenomena is imperative to ensure that all populations factor into future assumptions and research in this area. 
Using a sample comprising Chinese adolescents, we will add to the literature by investigating PSU heterogeneity 
using LPA and relations with specific types of anxiety, including SAD and GAD symptoms (Guo et al., 2020), and 
FoMO (Lo Coco et al., 2020) in Chinese participants as we outline in the research model below. 

Research Model 

Based on the I-PACE model, GAD and SAD (P-component), and FoMO (A/C-component) are modeled as 
psychopathology-related covariates associated with latent PSU profile group membership (see Figure 1). Prior 
studies have analyzed data similarly using this “person-centered“ approach but have yet to incorporate multiple 
types of anxiety as in the present paper (Elhai, Yang, Dempsey, & Montag, 2020; Elhai, Rozgonjuk et al., 2019; Mok 
et al., 2014). As for sex and age, S.-Y. Yang et al. (2018) and Claesdotter-Knutsson et al. (2021) both demonstrated 
that females are especially susceptible to PSU, and the systematic review from Busch and McCarthy (2021) 
demonstrated that age was a frequent correlate of PSU; therefore, we included both age and sex as covariates. 

  



Figure 1. Model of Covariates and Latent Profile Variable. 

 

Hypotheses  

Prior work using similar samples (Elhai, Rozgonjuk et al., 2019; Elhai et al., 2021a; L. Hong et al., 2022a; H. Yang 
et al., 2022) has mostly demonstrated three to four latent PSU profiles related to some type of anxiety but not 
using the precise variables here of SAD, GAD and FoMO. As we noted earlier, previous work using LPA reveals that 
the severity of profiles did, in a majority of cases, show significant relationships between the severity of the latent 
profiles and scores of measures chosen for covariates. 

H1: Three to four latent profiles of PSU will be uncovered in the present dataset. 

H2: More severe latent profiles of PSU will be positively related to the severity of FoMO. 

H3: More severe latent profiles of PSU will be positively related to GAD severity. 

H4: More severe latent profiles of PSU will be positively related to SAD severity. 

Methods 

Participants and Procedure 

For the present study, participants were asked to complete an anonymous online survey using wjx.cn—a Chinese 
web survey platform. Tianjin Normal University‘s Psychology Ethics Board granted approval for this study, and 
both participant assent and informed consent from legal guardians was collected electronically prior to 
participants‘ enrollment in the study. Data were collected from February 2020 to March 2020 at the beginning of 
the COVID-19 pandemic during the lockdown in China. Participants were senior high school students in Tianjin, 
China (population of 14 million) attending school remotely from home and were offered the opportunity by their 
teachers to participate in the study. All measures described below were administered to participants in Simplified 
Chinese characters.  

After excluding data of n = 30 individuals indicating careless response patterns using methods in the careless R 
package (Yentes & Wilhelm, 2018), n = 1,797 participants remained in the final sample. Web survey participants 
were required to input responses for all items; therefore, we did not have missing data. Participants were 
adolescents with an average age of 16.80 years (SD = 0.91, range 13–19). Most participants were female (n = 1,164, 
64.8%). Most participants were of Han Chinese ethnicity (n = 1,689, 94%). 

 

 



Measures 

Demographics 

We collected demographic information from participants on their sex, age, and ethnicity. 

Smartphone Addiction Scale-Short Version (SAS-SV) 

PSU was assessed using the Chinese version of the SAS-SV (B. Chen et al., 2017), a measure based on the original 
English and Korean SAS-SV (Kwon et al., 2013). The scale consists of 10 items regarding current smartphone use 
consequences (e.g., Missed planned work due to smartphone use) rated on a 6-point Likert scale from 1 (Strongly 
disagree) to 6 (Strongly agree). The Chinese version has demonstrated good psychometrics previously (Luk et al., 
2018) and in the present sample (e.g., internal consistency estimate: Cronbach‘s α = .902). 

Generalized Anxiety Disorder-7 (GAD-7) 

We used the Chinese version (He et al., 2010) of the Generalized Anxiety Disorder 7-item (GAD-7) scale, a self-
report measure assessing anxiety and worry symptoms (e.g., Feeling nervous, anxious or on edge) over the past two 
weeks, initially created and validated in English (Spitzer et al., 2006). The scale‘s items are rated on a 5-point Likert 
scale from 0 (Not at all) to 4 (Nearly every day). The Chinese GAD-7 has shown adequate psychometric properties 
in previous work (He et al., 2010) and the present sample (α = .919). 

Social Interaction Anxiety Scale (SIAS) 

The Social Interaction Anxiety Scale (SIAS) is a 20-item scale on which items are rated from 0 (Not at all characteristic 
or true of me) to 4 (Extremely characteristic or true of me) to assess a participant‘s current cognitive, affective, and 
behavioral reaction to social interaction situations (e.g., When mixing socially I am uncomfortable). This scale has 
demonstrated good psychometrics across samples (Heimberg et al., 1992). We used the Chinese language version 
with good psychometrics (Ye et al., 1993), such as the internal consistency estimate in the present sample 
(α = .908). For this study we used only the 17 non-reverse items of the scale (Rodebaugh et al., 2011). 

Fear of Missing Out (FoMO) Scale 

The FoMO scale (Przybylski et al., 2013) is an instrument consisting of 10 items answered on a rating scale from 
1 (Not at all true of me) to 5 (Extremely true of me). This scale measures the anxiety individuals report about missing 
out on rewarding experiences with others (e.g., I fear others have more rewarding experiences than me). The measure 
demonstrates good psychometrics (Przybylski et al., 2013). We used the Chinese language version with adequate 
reliability and validity (Xie et al., 2018) and good Cronbach‘s α in the present sample (.841).    

Analyses 

For data management, correlational, and descriptive analyses, we used version 3.6.1 of R software (R Core Team, 
2013). We used careless (insufficient effort), corrplot (bivariate correlations), fmsb (internal reliability), pastecs 
(normality and descriptives), and sjstats (ANOVA effects) packages. The largest values for skewness and kurtosis 
were 1.38 and 1.98, respectively, for GAD, suggesting normal variable distributions (Curran et al., 1996). 

We used Mplus version 8.3 (Muthén & Muthén, 2018) for LPA of SAS-SV items. We treated SAS-SV items as 
continuously scaled (Flora & Curran, 2004) using maximum likelihood estimation with robust standard errors 
(Maydeu-Olivares, 2017). First, we tested unconditional models starting with as few as one profile until no 
significant fit increase was found for models with more (k) profiles (thus suggesting retaining the model with k – 1 
profiles). For the best-fitting model, we added the covariates to model PSU latent profile group membership as 
the dependent variable, using Vermunt’s three-step method, which reduces misclassification and enhances 
accuracy (Collier & Leite, 2017). 



Results 

Descriptives of the sample can be found in Table 1. Figure 2 shows bivariate Pearson correlations among variables 
on scale level. Table 2 displays the unconditional LPA models and fit statistics for comparison. The distinction 
becomes apparent when considering Vuong-Lo-Mendell-Rubin (VLMR) and adjusted Lo-Mendell-Rubin (aLMR) 
Likelihood Ratio Test (LRT) p-values (Tein et al., 2013). For the LPA, we began by testing a one-profile model and 
then incrementally tested models with one more class (tested one by one) until we discovered the first non-
significant (p > .05) result. The first non-significant result appeared on the seven-profile model, leading to an 
extraction of six total profiles (see Table 2 for adjusted Lo-Mendell-Rubin p-values). To account for the likelihood 
of inflated Type I error, we performed a familywise correction to obtain a corrected alpha (Lövdén et al., 2018, 
Schuler et al., 2014). Due to interdependence of the profile solutions, we opted to use the more conservative 
Bonferroni correction (Abdi, 2007; Dunn, 1961) rather than Holm (1979) or Hochberg (1988) sequential variations. 
Therefore, we applied a correction (adjusted-alpha = 0.05 / 6 = .008) with which to ascertain the optimal (k – 1 
profile) model (see again, Table 2). We accepted the three-profile model after applying the corrected alpha to each 
solution. When using the corrected alpha, the first non-significant result was the four-profile model (with an 
obtained p-value larger than the corrected alpha). In fact, no additional solutions are typically considered after a 
non-significant result is found with fewer profiles (Lo et al., 2001; Nylund et al., 2007). Further, when examining 
AIC, and BIC after three profiles the values begin to flatten; additionally, the worsening of entropy values further 
strengthens confidence in the three-profile model. The three-profile model had excellent participant classification 
of 95% for Profile 1, 94% for Profile 2, and 93% for Profile 3 (see bolded numbers in Table 3). 

Table 1. Descriptives of Study Primary Variables. 
  Minimum Maximum Mean SD Skewness Kurtosis 
Age 13 19 16.80 0.91 0.04 −0.12 
Smartphone Addiction Scale-Short Version 10 60 32.59 11.11 0.11 −0.42 
Generalized Anxiety Disorder-7 0 21 3.88 4.55 1.38 1.98 
Social Interaction Anxiety Scale 1 69 22.75 14.58 0.70 −0.20 
Fear of Missing Out Scale 10 50 24.45 7.63 1.01 0.70 

 

Figure 2. Pearson Correlation Matrix Heat Map of Primary Variables. 
 

 
Note. SAS-SV = Smartphone Addiction Scale-Short Version, FoMO = Fear of Missing Out, GAD = Generalized Anxiety Disorder, SIAS = Social 
Interaction Anxiety Scale. All correlations were positive and were significant at p < .001; a darker shade indicates a stronger correlation. 



Table 2. Smartphone Addiction Scale Item Latent Profile Analysis Model Comparisons. 

# of profiles BIC aBIC Entropy VLMR p aLMR p Bonferroni-corrected 
threshold 

 6,6546.41 6,6482.87 NA NA NA NA NA NA 

2 6,1176.65 6,1078.17 0.87 5,452.19 < .001 5,386.84 < .001 0.008 

3 5,9528.53 5,9395.10 0.87 1,730.56 < .001 1,709.8
2 

< .001 0.008 

4 5,8826.11 5,8657.73 0.84 784.85 0.021 775.45 0.021 0.008 

5 5,8306.95 5,8103.63 0.85 601.59 0.020 594.38 0.020 0.008 

6 5,8087.35 5,7849.08 0.86 302.04 0.004 298.42 0.004 0.008 

7 5,7921.85 5,7648.64 0.86 247.92 0.345 244.95 0.345 0.008 
Note. BIC = Bayesian Information Criterion; aBIC = adjusted BIC; VLMR = Vuong-Lo-Mendell-Rubin likelihood ratio test value; aLMR = adjusted 
LMR likelihood ratio test value; NA = not applicable (not possible to estimate values for one-profile model). 
  

Figure 3 shows standardized mean SAS-SV item scores for the three-profile model. Three distinct but somewhat 
parallel profiles (proportion and probabilities shown in Table 3) were demonstrated. Profile 1 (Low PSU severity; 
n = 600, 33.4%) shows the lowest reporting of PSU on the SAS-SV items with a primarily flat appearance. Profile 2 
(Moderate; n = 896, 49.9%) is similar in that it is primarily flat, with the emergence of dips and spikes for items 
three, physical pain, and nine, tolerance, on the scale. However, profile 3 (High; n = 301, 16.8%) is the most extreme 
in both levels of PSU and with defined spikes on several items from the SAS-SV. Physical pain continues to show 
lower score values in profile 3 compared to other item scores in this profile, but items four, can’t be without, and 
five, impatient and fretful, as well as item six, always on my mind, and nine tolerance show notable spikes. 

Table 3. Relative Proportions of Latent Profiles With Membership Probabilities. 

    Profile Membership Probability 

Profile Count Proportion 1 2 3 

1 600 33.39% 0.948 0.052 0.000 

2 896 49.86% 0.033 0.938 0.029 

3 301 16.75% 0.000 0.067 0.933 
 

Figure 3. Three-Profile Smartphone Addiction Scale Latent Profile Analysis Model With 
Standardized Mean Item Scores (See Appendix for Complete SAS-SV Items). 

 



Table 4 displays unstandardized logistic regression coefficients and odds ratios for covariate relationships with 
SAS latent profile membership. Using profile 1 as the reference profile/class, we found that higher levels of 
measured covariates (but not sex) are more likely to be found in profile 2 than in profile 1, and more likely in 
profile 3 than in profile 1. We analyzed other parameterizations as well by modifying the reference profile. FoMO, 
GAD, and SAD severity were significant in those parameterizations (higher scores in profile 3 than profile 2), and 
sex remained non-significant. When using profile 2 as the reference, age failed to obtain significance. Odds ratios 
were slightly higher for FoMO and GAD severity (compared to SAD) in discriminating between more severe and 
less severe profiles. 

Table 4. SAS Latent Profile Membership and Relationships With Covariates Using Multinomial Logistic Regression  
and the Vermunt Three-Step Method. 

Covariate B SE of B z-score p Odds Ratio 
Profile 2 (compared to reference Profile 1)      

Sex 0.19 0.13 1.44 .149 1.21 

Age 0.16 0.07 2.38 .017 1.17 

Fear of Missing Out 0.07 0.01 6.40 <.001 1.08 

Generalized Anxiety Disorder 0.06 0.02 2.50 .012 1.06 

Social Anxiety 0.03 0.01 4.13 <.001 1.03 

Profile 3 (compared to reference Profile 1)      

Sex 0.31 0.18 1.71 .087 1.37 

Age 0.20 0.10 2.13 .033 1.22 

Fear of Missing Out 0.14 0.02 9.21 <.001 1.15 

Generalized Anxiety Disorder 0.13 0.03 4.70 <.001 1.13 

Social Anxiety 0.04 0.01 5.34 <.001 1.04 
Note. For sex, males = 1, and females = 2 (i.e., significant positive regression coefficient indicates a higher profile is associated 
with the female sex). 

Discussion 

Analysis of the data collected from Chinese high school students revealed three latent profiles based on severity 
of PSU symptom ratings, consistent with our hypothesis (H1). All three profiles demonstrated relatively uniform 
severity levels across PSU items but were not completely parallel. Thus, we found some support for heterogeneity 
in PSU symptom presentations.  

In addition, we found support for H2. FoMO severity was positively related to more severe latent profiles of PSU 
severity, consistent with prior work in the variable-centered literature on adolescents (Adrian, 2021; Lo Coco et al., 
2020), as well as several mediation studies showing FoMO severity is related to PSU severity and other constructs 
(Wolniewicz et al., 2020; H. Yang et al., 2021; Yuan et al., 2021). In the sense that more severe profiles of PSU are 
related to more severe symptoms of FoMO, the results here further bolster evidence in support of FoMO’s 
constituency as a cognitive influence on PSU in the I-PACE model (Brand et al., 2016; 2019).  

Moreover, we found support for H3 in that reported GAD symptoms were significantly positively related to more 
severe latent profiles of PSU severity. The present study is the first that evaluated GAD symptoms related to latent 
profiles of PSU. Again, the I-PACE model provides a paradigm with which we could examine the psychopathology 
of GAD as a personal characteristic that influences PSU. Several correlational studies have shown that GAD 
symptoms are associated with PSU severity (Coyne et al., 2019; Guo et al., 2020). As well, recent variable-centered 
PSU and anxiety studies (Gorday, 2022; Ma, 2022) have demonstrated similar results to the present latent profiles 
in that anxiety is positively related to PSU. Therefore, it can be useful to look closer at the subgroups (or 
heterogeneity) within those populations to understand that relationship more thoroughly.  

Furthermore, we found support for H4 as the present analysis demonstrated that reported symptoms of SAD 
were positively related to more severe latent profiles of PSU severity. The literature regarding latent profiles of 
PSU and SAD is developing, and the present analysis—notably within the paradigm of the I-PACE model—supports 
existing variable-centered work (Patel, 2022) and is additive to the existing work in the area of latent profiles. Of 
note, a recent study of Chinese university students (Yue et al., 2021) found that latent profiles of PSU were not 
significantly related to self-reported symptoms of SAD. As we have previously discussed, latent profiles allow for 



a more granular look into a collection of data, its subgroups, and covariates. Because of these fluctuating results, 
further studies of SAD as a predictor of PSU should be conducted to assess not only social anxiety’s relationship 
to PSU but also possible moderating (W. Hong et al., 2019) and mediating factors (Annoni et al., 2021; Emirtekin 
et al., 2019; Y.-K. Lee et al., 2016; You et al., 2019) that could be explaining the SAD-PSU relationship. 

Lastly, we controlled for sex and age as covariates of latent profiles of PSU severity. Contrary to prior variable-
centric works showing females engage in greater PSU severity (Busch & McCarthy, 2021; Claesdotter-Knutsson 
et al., 2021; S.-Y. Yang et al., 2018), in this study, we found no such significant relationship with PSU latent profiles. 
It is possible that because a majority of subjects reported being female (n = 1,164, 64.8%) in the present work, that 
a more balanced sample in terms of distribution of sexes would lead to a positive association with sex. We also 
observed that age was positively related to more severe latent profiles. Though we had a truncated age range of 
high school students, it is consistent with the literature that as age increases the amount of smartphone use 
increases as well (Andone et al., 2016; Csibi et al., 2021). 

Data collection of a substantial sample (N = 1,797) demonstrated strong internal reliability on all measures and, 
as previously discussed, were normally distributed. However, the study had some limitations. We used self-report 
measures for GAD, FoMO, and SAD, rather than diagnostic interviews conducted in a clinical setting. Correlational 
tests cannot determine causation, and the cross-sectional design of the study should be interpreted as such. Also 
of note, the measures we used to collect data did not have adolescent Chinese versions. Therefore, the measures 
we employed were the validated adult Chinese versions, and this was a study limitation. This study was conducted 
at the start of the COVID-19 pandemic from February to March 2020; this may also limit the generalizability of the 
results. 

Despite those limitations, the present study examining latent subgroups of Chinese high school students and 
relations with multiple anxiety constructs is novel and additive to a growing PSU LPA literature. Examination of 
latent profiles of PSU and relationships with psychopathology variables, social cognitive variables, sex/gender, and 
age should develop further. Future research can delve into other populations and additional measures of 
psychopathology and cognition related to the I-PACE model. As has been suggested in this paper, and by other 
researchers conducting LPA studies (L. Hong et al., 2022b; Liu et al., 2021; Moggia et al., 2023; Stănculescu & 
Griffiths, 2022), this kind of person-centered analysis can help to identify anxiety types (rather than anxiety overall) 
and inform more fine-tuned future treatment plans of those subgroups who might be more susceptible to PSU 
and other mobile internet use disorders. Extensive literature at the variable-centric level has shed light on this 
subject, and to continue to define that body of work using LPA can and will serve to refine our knowledge and 
enlighten strategies for approaching PSU. 
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Appendix 

Smartphone Addiction Scale-Short Version Items 

1. Missing planned work due to smartphone use. 
2. Having a hard time concentrating in class, while doing assignments, or while working due to smartphone use. 
3. Feeling pain in the wrists or at the back of the neck while using a smartphone. 
4. Won’t be able to stand not having a smartphone. 
5. Feeling impatient and fretful when I am not holding my smartphone. 
6. Having my smartphone in my mind even when I am not using it. 
7. I will never give up using my smartphone even when my daily life is already greatly affected by it. 
8. Constantly checking my smartphone so as not to miss conversations between other people on Twitter or 

Facebook. 
9. Using my smartphone longer than I had intended. 
10. The people around me tell me that I use my smartphone too much. 
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